Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1334918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559345

RESUMO

Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.

2.
AMB Express ; 14(1): 35, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615116

RESUMO

Endophytic bacteria are one of the symbiotic microbial groups closely related to host algae. However, less research on the endophytic bacteria of marine algae. In this study, the endophytic bacterial community of Sargassum thunbergii was investigated using the culture method and high-throughput sequencing. Thirty-nine endophytic bacterial strains, belonging to two phyla, five genera and sixteen species, were isolated, and Firmicutes, Bacillus and Metabacillus indicus were the dominant taxa at the phylum, genus and species level, respectively. High-throughput sequencing revealed 39 phyla and 574 genera of endophytic bacteria, and the dominant phylum was Proteobacteria, while the dominant genus was Ralstonia. The results also indicated that the endophytic bacteria of S. thunbergii included various groups with nitrogen fixation, salt tolerance, pollutant degradation, and antibacterial properties but also contained some pathogenic bacteria. Additionally, the endophytic bacterial community shared a large number of groups with the epiphytic bacteria and bacteria in the surrounding seawater, but the three groups of samples could be clustered separately. In conclusion, there are a variety of functional endophytic bacteria living in S. thunbergii, and the internal condition of algae is a selective factor for the formation of endophytic bacterial communities. This study enriched the database of endophytic bacteria in marine macroalgae, paving the way for further understanding of the interrelationships between endophytic bacteria, macroalgae, and the environment.

3.
Environ Pollut ; 348: 123850, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548148

RESUMO

As emerging pollutants in the aquatic environments, micro- and nano-plastics (MNPs) aroused widespread environmental concerns for their potential threats to the ecological health. Previous research has proved that microalgae growth could recover from the MNPs toxicities, in which the extracellular polymeric substances (EPS) might play the key role. In order to comprehensively investigate the recovery process of microalgae from MNPs stress and the effecting mechanisms of EPS therein, this study conducted a series of experiments by employing two sizes (0.1 and 1 µm) of polystyrene (PS) MNPs and the marine model diatom Thalassiosira pseudonana during 14 days. The results indicated: the pigments accumulations and photosynthetic recovery of T. pseudonana under MPs exposure showed in the early stage (4-5 days), while the elevation of reactive oxygen species (ROS) and EPS contents lasted longer time period (7-8 days). EPS was aggregated with MNPs particles and microalgal cells, corresponding to the increased settlement rates. More increase of soluble (SL)-EPS contents was found than bound (B)-EPS under MNPs exposure, in which the increase of the protein proportion and humic acid-like substances in SL-EPS was found, thus facilitating aggregates formation. ROS was the signaling molecule mediating the overproduction of EPS. The transcriptional results further proved the enhanced EPS biosynthesis on the molecular level. Therefore, this study elucidated the recovery pattern of microalgae from MNPs stress and linked "ROS-EPS production changes-aggregation formation" together during the growth recovery process, with important scientific and environmental significance.


Assuntos
Diatomáceas , Microalgas , Poluentes Químicos da Água , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio , Microplásticos/toxicidade , Matriz Extracelular de Substâncias Poliméricas , Poluentes Químicos da Água/toxicidade , Plásticos
4.
BMC Plant Biol ; 24(1): 143, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413873

RESUMO

BACKGROUND: Solar radiation is primarily composed of ultraviolet radiation (UVR, 200 - 400 nm) and photosynthetically active radiation (PAR, 400 - 700 nm). Ultraviolet-B (UVB) radiation accounts for only a small proportion of sunlight, and it is the primary cause of plant photodamage. The use of chlorofluorocarbons (CFCs) as refrigerants caused serious ozone depletion in the 1980s, and this had led to an increase in UVB. Although CFC emissions have significantly decreased in recent years, UVB radiation still remains at a high intensity. UVB radiation increase is an important factor that influences plant physiological processes. Ulva prolifera, a type of macroalga found in the intertidal zone, is intermittently exposed to UVB. Alternative oxidase (AOX) plays an important role in plants under stresses. This research examines the changes in AOX activity and the relationships among AOX, photosynthesis, and reactive oxygen species (ROS) homeostasis in U. prolifera under changes in UVB and photosynthetically active radiation (PAR). RESULTS: UVB was the main component of solar radiation impacting the typical intertidal green macroalgae U. prolifera. AOX was found to be important during the process of photosynthesis optimization of U. prolifera due to a synergistic effect with non-photochemical quenching (NPQ) under UVB radiation. AOX and glycolate oxidase (GO) worked together to achieve NADPH homeostasis to achieve photosynthesis optimization under changes in PAR + UVB. The synergism of AOX with superoxide dismutase (SOD) and catalase (CAT) was important during the process of ROS homeostasis under PAR + UVB. CONCLUSIONS: AOX plays an important role in the process of photosynthesis optimization and ROS homeostasis in U. prolifera under UVB radiation. This study provides further insights into the response of intertidal macroalgae to solar light changes.


Assuntos
60578 , Proteínas Mitocondriais , Oxirredutases , Proteínas de Plantas , Alga Marinha , Raios Ultravioleta , Ulva , Espécies Reativas de Oxigênio , Fotossíntese/fisiologia , Aclimatação
5.
Sci Total Environ ; 921: 171131, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387578

RESUMO

Polybrominated diphenyl ethers (PBDEs) are widespread in marine ecosystems, despite the limits placed on several congeners, and pose a threat to marine organisms. Many coexisting factors, especially dissolved organic matter (DOM), affect the environmental behavior and ecological risk of PBDEs. Since blooms frequently occur in coastal waters, we used algogenic DOM (A-DOM) from the diatom Skeletonem costatum and examined the interaction of A-DOM with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Moreover, their combined effect on the rotifer Brachionus plicatilis was analyzed. During the stationary period, A-DOM had more proteins than polysaccharides, and 7 extracellular proteins were identified. A-DOM fluorescence was statically quenched by BDE-47, and amide, carbonyl, and hydroxyl groups in A-DOM were involved. Molecular docking analysis showed that all 5 selected proteins of A-DOM could spontaneously bind with BDE-47 and that hydrophobic interactions, van der Waals forces and pi-bond interactions existed. The reproductive damage, oxidative stress and inhibition of mitochondrial activity induced by BDE-47 in rotifers were relieved by A-DOM addition. Transcriptomic analysis further showed that A-DOM could activate energy metabolic pathways in rotifers and upregulate genes encoding metabolic detoxification proteins and DNA repair. Moreover, A-DOM alleviated the interference effect of BDE-47 on lysosomes, the extracellular matrix pathway and the calcium signaling system. Alcian blue staining and scanning electron microscopy showed that A-DOM aggregates were mainly stuck to the corona and cuticular surface of the rotifers; this mechanism, rather than a real increase in uptake, was the reason for enhanced bioconcentration. This study reveals the complex role of marine A-DOM in PBDEs bioavailability and enhances the knowledge related to risk assessments of PBDE-like contaminants in marine environments.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Zooplâncton/metabolismo , Éteres Difenil Halogenados/análise , Ecossistema , Matéria Orgânica Dissolvida , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/análise , Rotíferos/fisiologia
6.
Sci Total Environ ; 921: 170864, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401740

RESUMO

As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 µM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.


Assuntos
Retardadores de Chama , Zooplâncton , Animais , Simulação de Dinâmica Molecular , Natação , Simulação de Acoplamento Molecular , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Ceramidas , Lipídeos , Trifosfato de Adenosina , Retardadores de Chama/toxicidade
7.
Environ Pollut ; 338: 122702, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821042

RESUMO

A variety of studies have investigated the toxic effects of microplastics (MPs) on microalgae, but few of them considered their influence on dinoflagellate toxins production, which could cause significant ecological safety concerns in coastal areas. This research investigated the impacts of 5 µg L-1 and 5 mg L-1 polystyrene (PS) MPs on the changes of paralytic shellfish toxins (PSTs) production and their relationship with cellular oxidative stress of Alexandrium tamarense, a common harmful algal blooms causative dinoflagellate. The results showed elevation of reactive oxygen species (ROS) levels, activation of antioxidant system and overproduction of PSTs were positively correlated under PS MPs exposure (especially under 5 mg L-1 PS MPs), and the PSTs changes were eliminated by the ROS inhibitor. Further transcriptomic analysis revealed that ROS could enhance biosynthesis of glutamate, providing raw materials for PSTs precursor arginine, accompanied with enhanced acetyl-CoA and ATP production, finally leading to the overproduction of PSTs. Moreover, the oxidative intracellular environments might block the reduction process from STX to C1&C2, leading to the increase of STX and decrease of C1&C2 proportions. This work brings the first evidence that ROS could mediate PSTs production and compositions of Alexandrium under MPs exposure, with important scientific and ecological significance.


Assuntos
Dinoflagelados , Plásticos , Plásticos/farmacologia , Espécies Reativas de Oxigênio , Microplásticos/toxicidade , Toxinas Marinhas/toxicidade , Frutos do Mar
8.
Microorganisms ; 11(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37630579

RESUMO

Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.

9.
J Hazard Mater ; 459: 132224, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37557041

RESUMO

Organophosphorus flame retardants (OPFRs) are frequently detected in aquatic environments and can potentially amplify the food chain, posing a potential risk to organisms. Marine invertebrates have primitive nervous systems to regulate behavior, but how they respond to OPFRs that are potentially neurotoxic substances is unclear. This study assessed changes in the feeding behavior of rotifer Brachionus plicatilis exposed to alkyl OPFRs tributyl phosphate (TnBP) (0.376 nM, 3.76 and 22.53 µM) to elucidate the mechanism of behavioral toxicity. TnBP at 22.53 µM reduced the ingestion and filtration rates of rotifers for Chlorella vulgaris and Phaeocystis globosa in a 24-h test and altered rotifer-P. globosa population dynamics in 15-d coculture. Ciliary beat frequency was also reduced, and the expression of genes encoding the cilia axoneme was downregulated. TnBP could inhibit rotifer acetylcholinesterase activity by binding this protein and reduce the expression of the exocytotic membrane protein syntaxin-4, suggesting a disorder in nervous regulation of cilia beat. Moreover, TnBP induced abnormal shape and dysfunction of mitochondria, which caused insufficient energy required for ciliary movement. This study revealed diverse neurotoxicity mechanisms of TnBP, particularly as a potentially competing acetylcholinesterase ligand for aquatic invertebrates. Our research also provides a meaningful reference for OPFR-induced behavioral toxicity assessments.


Assuntos
Chlorella vulgaris , Retardadores de Chama , Rotíferos , Animais , Acetilcolinesterase/metabolismo , Cílios/metabolismo , Chlorella vulgaris/metabolismo , Axonema/metabolismo , Rotíferos/metabolismo , Organofosfatos , Comportamento Alimentar , Compostos Organofosforados
10.
Oncol Lett ; 26(2): 327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415631

RESUMO

Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.

11.
Sci Total Environ ; 892: 164388, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236467

RESUMO

Microplastics (MPs) in marine environments simultaneously affect microalgae with UV-B radiation, while their joint effecting mechanisms remain largely unknown. To fill this research gap, the joint effects of polymethyl methacrylate (PMMA) MPs and UV-B radiation (natural environments intensity) on the model marine diatom Thalassiosira pseudonana were investigated. Antagonism was found between the two factors with regards to population growth. Furthermore, we found more inhibited population growth and photosynthetic parameters when pre-treated with PMMA MPs compared to pre-treated with UV-B radiation before joint-treated by the two factors. Transcriptional analysis elucidated that UV-B radiation could alleviate the down-regulation of photosynthetic (PSII, cyt b6/f complex and photosynthetic electron transport) and chlorophyll biosynthesis genes caused by PMMA MPs. Besides, the genes encoding carbon fixation and metabolisms was up-regulated under UV-B radiation, which could provide extra energy for the enhanced anti-oxidative activities and DNA replication-repair processes. These consequences showed that the toxicity of PMMA MPs was comprehensively alleviated when T. pseudonana was jointed treated by UV-B radiation. Our results reveled the underlying molecular mechanisms of antagonistic effects between PMMA MPs and UV-B radiation. This study provides important information that environmental factors like UV-B radiation should be considered when accessing the ecological risks of MPs on marine organisms.


Assuntos
Diatomáceas , Microplásticos/metabolismo , Plásticos/metabolismo , Polimetil Metacrilato/toxicidade , Polimetil Metacrilato/metabolismo , Fotossíntese
12.
Plants (Basel) ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050062

RESUMO

Seagrass is a significant primary producer of coastal ecosystems; however, the continued degradation of seagrass beds is a serious problem that has attracted widespread attention from researchers. Rhizosphere microorganisms affect seagrass and participate in many life activities of seagrass. This study explored the relationship between the composition of microbes in the rhizosphere and the surrounding environment of Ruppia sinensis by using High-throughput sequencing methods. The dominant bacterial groups in the rhizosphere surface sediments of R. sinensis and the surrounding environment are Proteobacteria, Bacteroidota, and Firmicutes. Moreover, the dominant fungal groups are Ascomycota, Basidiomycota, and Chytridiomycota. Significant differences (p < 0.05) were identified in microbial communities among different groups (rhizosphere, bulk sediment, and surrounding seawater). Seventy-four ASVs (For bacteria) and 48 ASVs (For fungal) were shared among seagrass rhizosphere, surrounding sediment, and seawater. The rhizosphere was enriched in sulfate-reducing bacteria and nitrogen-fixing bacteria. In general, we obtained the rhizosphere microbial community of R. sinensis, which provided extensive evidence of the relative contribution of the seagrass rhizosphere and the surrounding environment.

13.
Colloids Surf B Biointerfaces ; 225: 113248, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905834

RESUMO

The sensitive and rapid detection of dopamine (DA) is of great significance for early diagnosis of related diseases. Current detection strategies of DA are time-consuming, expensive and inaccurate, while biosynthetic nanomaterials were considered highly stable and environment friendly, which were promising on colorimetric sensing. Thus, in this study, novel zinc phosphate hydrate nanosheets (SA@ZnPNS) biosynthesized by Shewanella algae were designed for the detection of DA. SA@ZnPNS showed high peroxidase-like activity which catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Results showed that the catalytic reaction of SA@ZnPNS followed Michaelis-Menton kinetics, and catalytic process conformed to ping-pong mechanism with chief active species of hydroxyl radicals. The colorimetric detection of DA in human serum samples was performed based on SA@ZnPNS peroxidase-like activity. The linear range of DA detection was 0.1-40 µM, and the detection limit was 0.083 µM. This study provided a simple and practical method for the detection of DA and expanded the application of biosynthesized nanoparticles to biosensing fields.


Assuntos
Materiais Biomiméticos , Peroxidase , Humanos , Dopamina , Peróxido de Hidrogênio , Peroxidases , Fosfatos , Colorimetria/métodos , Limite de Detecção
14.
Sci Rep ; 13(1): 3985, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894683

RESUMO

The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the ß diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.


Assuntos
Sargassum , Alga Marinha , Ecossistema , Bactérias , Alga Marinha/microbiologia , Plantas/efeitos da radiação
15.
Front Plant Sci ; 14: 1130292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968358

RESUMO

Seed development is a crucial phase in the life cycle of seed-propagated plants. As the only group of angiosperms that evolved from terrestrial plants to complete their life cycle submerged in marine environments, the mechanisms underlying seed development in seagrasses are still largely unknown. In the present study, we attempted to combine transcriptomic, metabolomic, and physiological data to comprehensively analyze the molecular mechanism that regulates energy metabolism in Zostera marina seeds at the four major developmental stages. Our results demonstrated that seed metabolism was reprogrammed with significant alteration of starch and sucrose metabolism, glycolysis, the tricarboxylic acid cycle (TCA cycle), and the pentose phosphate pathway during the transition from seed formation to seedling establishment. The interconversion of starch and sugar provided energy storage substances in mature seeds and further acted as energy sources to support seed germination and seedling growth. The glycolysis pathway was active during Z. marina germination and seedling establishment, which provided pyruvate for TCA cycle by decomposing soluble sugar. Notably, the biological processes of glycolysis were severely inhibited during Z. marina seed maturation may have a positive effect on seed germination, maintaining a low level of metabolic activity during seed maturation to preserve seed viability. Increased acetyl-CoA and ATP contents were accompanied with the higher TCA cycle activity during seed germination and seedling establishment, indicating that the accumulations of precursor and intermediates metabolite that can strengthen the TCA cycle and facilitate energy supply for Z. marina seed germination and seedling growth. The large amount of oxidatively generated sugar phosphate promotes fructose 1,6-bisphosphate synthesis to feed back to glycolysis during seed germination, indicating that the pentose phosphate pathway not only provides energy for germination, but also complements the glycolytic pathway. Collectively, our findings suggest these energy metabolism pathways cooperate with each other in the process of seed transformation from maturity to seedling establishment, transforming seed from storage tissue to highly active metabolic tissue to meet the energy requirement seed development. These findings provide insights into the roles of the energy metabolism pathway in the complete developmental process of Z. marina seeds from different perspectives, which could facilitate habitat restoration of Z. marina meadows via seeds.

16.
J Phycol ; 59(2): 418-431, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798977

RESUMO

By combining physiological/biochemical and transcriptional analysis, the inhibition and recovery mechanisms of Phaeodactylum tricornutum in response to extreme high light stress (1300 µmol photons · m-2  · s-1 ) were elucidated. The population growth was inhibited in the first 24 h and started to recover from 48 h. At 24 h, photoinhibition was exhibited as the changes of PSII photosynthetic parameters and decrease in cellular pigments, corresponding to the downregulation of genes encoding light-harvesting complex and pigments synthesis. Changes in those photosynthetic parameters and genes were kept until 96 h, indicating that the decrease of light absorption abilities might be one strategy for photoacclimation. In the meanwhile, we observed elevated cellular ROS levels, dead cells proportions, and upregulation of genes encoding antioxidant materials and proteasome pathway at 24 h. Those stress-related parameters and genes recovered to the controls at 96 h, indicating a stable intracellular environment after photoacclimation. Finally, genes involving carbon metabolisms were upregulated from 24 to 96 h, which ensured the energy supply for keeping high base and nucleotide excision repair abilities, leading to the recovery of cell cycle progression. We concluded that P. tricornutum could overcome photoinhibition by decreasing light-harvesting abilities, enhancing carbon metabolisms, activating anti-oxidative functions, and elevating repair abilities. The parameters of light harvesting, carbon metabolisms, and repair processes were responsible for the recovery phase, which could be considered long-term adaptive strategies for diatoms under high light stress.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Carbono/metabolismo
17.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814193

RESUMO

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Assuntos
Alismatales , Genoma de Cloroplastos , Hydrocharitaceae , Zosteraceae , Filogenia , Alismatales/genética , Zosteraceae/genética , Hydrocharitaceae/genética , Cloroplastos/genética , Genômica , Evolução Molecular
18.
Appl Environ Microbiol ; 89(1): e0181522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533927

RESUMO

Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.


Assuntos
Alga Marinha , Ulva , Eutrofização , Água do Mar/química , Bactérias/genética , China
19.
Int J Biol Macromol ; 225: 767-775, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403776

RESUMO

With global warming, high-temperature stress has become an essential abiotic factor affecting plant growth and survival. However, little knowledge was available of the molecular mechanism that aquatic plants respond to this stress. In the present study, we explore the adaptation mechanism of Spirodela polyrhiza, a surface-water-grown duckweed species broadly distributed worldwide to high temperatures, and analyze its gene expression pattern of S. polyrhiza under heat stress. Three temperature stress treatments, including room temperature group (CK), middle high-temperature group (MTS), and high-temperature group (45 °C, HTS) were set. The results showed that the contents of SOD first increased and then decreased, and those of MDA showed an upward trend under elevated high-temperature stress. According to the transcriptome data, 3145, 3487, and 3089 differently expressed genes (DEGs) were identified between MTS and CK, HTS and CK, and HTS and MTS, respectively. The transcription factors (TFs) analysis showed that 14 deferentially expressed TFs, including HSF, ERF, WRKY, and GRAS family, were responsive to heat stress, suggesting they might play vital roles in improving resistance to heat stress. In conclusion, S. polyrhiza could resist high temperatures by increasing SOD activity and MDA at the physiological level. Several transcription factors, energy accumulation processes, and cell membranes were involved in high-temperature stress at the molecular level. Our findings are helpful in better grasping the adaptation rules of some aquatic plants to high temperatures.


Assuntos
Araceae , Perfilação da Expressão Gênica , Plantas/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Araceae/genética , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas
20.
Environ Res ; 216(Pt 3): 114698, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328222

RESUMO

Microalgae act as the entrance of polybrominated diphenyl ethers (PBDEs) from abiotic to biotic environments, which controlled the environmental fate of PBDEs in aquatic environments. Combing with typical coastal environmental characteristics including extracellular polymer substances (EPS) enrichment, light limitation and nitrogen starvation, the changes of adsorption and absorption kinetics of BDE-47 by Chlorella sp. and the role of EPS therein were investigated. The results quantified the adsorption and absorption kinetics of BDE-47 by Chlorella sp. cells and fitted it by the Lagergren pseudo first order model. Furthermore, we found the adsorption and absorption kinetics could be changed by the above mentioned environmental factors. To be specific, the total BDE-47 adsorption amounts per microalgal cell were increased as the increase of ambient EPS (proteins or carbohydrates), attributing to the increase of soluble (SL)-EPS contents; increased total BDE-47 adsorption amounts but decreased absorption rates were found under light limitation and nitrogen starvation, which were attributed to increased bound (B)-EPS contents and protein/carbohydrates (P/C) ratios therein, respectively. Therefore, our study elucidated the adsorption and absorption kinetics of PBDEs by microalgae could be influenced by ambient environmental changes, clarified the roles of SL-EPS, B-EPS contents and P/C ratios, providing a solid basis for evaluating the environmental fate of PBDEs in the marine environments.


Assuntos
Chlorella , Microalgas , Éteres Difenil Halogenados/metabolismo , Adsorção , Chlorella/metabolismo , Cinética , Microalgas/metabolismo , Nitrogênio , Carboidratos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...